
~ Pergamon Computers ind. Engng Vol. 30, No. 2, pp. 257-267, 1996 
Copyright © 1996 Elsevier Science Ltd 

0360-8352(95)00170-0 Printed in Great Britain. All rights reserved 
0360-8352/96 $15.00 +0.00 

U S I N G  N E U R A L  N E T W O R K S  T O  P R E D I C T  C O M P O N E N T  

I N S P E C T I O N  R E Q U I R E M E N T S  F O R  A G I N G  A I R C R A F T *  

HUAN-JYH SHYUR, t JAMES T. LUXHOJ 1 and TREFOR P. WILLIAMS 2 
tDepartment of Industrial Engineering and 2Department of Civil Engineering, Rutgers University, 

P.O. Box 909, Piscataway, NJ 08855-0909, U.S.A. 

Abstract--Currently under development by the Federal Aviation Administration (FAA), the Safety 
Performance Analysis System (SPAS) will contain indicators of aircraft safety performance that can 
identify potential problem areas for inspectors. The Service Difficulty Reporting (SDR) system is one data 
source for SPAS and contains data related to the identification of abnormal, potentially unsafe conditions 
in aircraft or aircraft components/equipment. A higher expected number of SDRs suggests a greater 
possibility of a maintenance problem and may be used to alert Aviation Safety Inspectors (ASIs) of the 
need for preemptive safety or repair actions. 

The preliminary SDR performance indicator in SPAS is not well defined and is too general to be 
of practical value. In this study, an artificial neural network model is created to predict the number of 
SDRs that could be expected by part location using sample data from the SDR database that have been 
merged with aircraft utilization data. The predictions from the neural network models are then compared 
with results from multiple regression models. The methodological comparison suggests that artificial 
neural networks offer a promising technology in predicting component inspection requirements for aging 
aircraft. 

1. INTRODUCTION 

Large scale service systems, such as air and surface transport systems, require well designed 
maintenance management programs to effectively compete in a global economy. These repairable 
systems are subject to aging mechanisms, such as wear, fatigue, creep and stress corrosion. 
Inspection and diagnostic activities are integral components of an effective maintenance strategy 
in an attempt to ensure system safety, reliability and availability. 

Due to the significant growth in the number of aircraft in the U.S., there is an increasing number 
of structural components for the Federal Aviation Administration (FAA) to monitor. There is a 
need to develop new techniques for maintaining airworthiness of aging aircraft and for improved 
methods for accurate prediction of residual life of repaired structures. The use of new prediction 
methods, such as artificial neural networks, may prove useful for forecasting of removal and 
inspection dates for aircraft engines, assemblies and components. 

The Safety Performance Analysis System (SPAS), currently under development by the FAA, will 
be an analytical tool designed to support Aviation Safety Inspectors (ASIs) [1, 2] and will contain 
indicators of safety performance that can signal potential problem areas for inspector consideration 
[3-5]. It will also enable inspectors to access existing FAA data sources in a timely manner, and 
will function as a decision support tool to assist inspectors in identifying airlines and/or aircraft 
that present a greater safety risk and warrant further surveillance. 

The Flight Standards Information System (FSIS) is a comprehensive program that contains all 
Flight Standards automation efforts. SPAS and Flight Standards Automation are components of 
FSIS. The SPAS Project Management Plan was proposed in March 1991. SPAS is a novel research 
program for FAA inspection activities, since it will integrate data relating to air operator, air 
agencies, aircraft types and personnel and shifts away from the current use of decentralized 
databases. 

*This article is based on research performed at Rutgers University. The contents of this paper reflect the view of the authors 
who are solely responsible for the accuracy of the facts, analyses, conclusions, and recommendations presented herein, 
and do not necessarily reflect the ol~cial view or policy of the Federal Aviation Administration. 
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The FAA has established a Center for Computational Modeling of Aircraft Structures (CMAS) 
at Rutgers University. One CMAS research project has focused on analyzing the contribution of 
the Service Difficulty Reporting (SDR) database to SPAS. The SDR subsystem contains data 
related to the identification of abnormal, potentially unsafe conditions in aircraft or aircraft 
components/equipment. The major objectives of this research project are: 

- -To  develop meaningful indicators that establish national air operator profiles for comparison 
purposes. 

- -To  identify national SDR trends and inputs to improve the FAA's surveillance system. 
- -To  provide guidelines for the efficient scheduling of FAA safety inspectors. 

A significant effort of SPAS is to develop safety performance indicators that will identify and 
define critical safety characteristics for airline operators. The 13 performance indicators that are 
currently defined in SPAS will assist in diagnosing an airline's safety profile compared with others 
in the same class. The preliminary SDR performance indicator in SPAS is too general to be of 
practical value. The result of this CMAS research effort is that more refined, specific SDR 
performance indicators have been generated. The tracking of performance indicators facilitates the 
identification of unfavorable trends, thus enabling a safety inspector to focus attention on airlines 
most in need of closer examination. Such heightened tracking enhances efficient scheduling of 
inspections under budgetary and staffing constraints. 

Models to predict the overall number of SDRs, and the number or SDRs for cracking and 
corrosion cases by aircraft type have been developed using both multiple regression analysis and 
neural networks. The "best" models from these two modeling approaches have been compared and 
are reported in Luxhoj et al. [6]. Neural networks have proven to be a very effective model-free 
regression methodology to predict the expected number of SDRs. For creating more useful safety 
performance indicators, this paper attempts to predict the number of SDRs that could be expected 
by part location based on the SDR database. This is the first step to construct an indicator to signal 
potential problem areas by component type for inspector consideration. These alert indicators can 
be used to define upper and lower control limits and to monitor adverse trends in component 
performance. Efficient inspection activities will facilitate timely aircraft maintenance and minimize 
the cost of aircraft unavailability. 

While it is true that prediction models for determining aircraft maintenance requirements could 
be based on simply forecasting aggregate failure rates by aircraft type for all planes repaired at 
the same depot or forecasting failure rates for each plane assigned to a different, regional repair 
facility, the primary purpose of the CMAS research focuses on the composite inspection activities 
of a regulatory agency. 

2. RESEARCH METHODOLOGY 

While there exist many prediction methods in the literature, this research focuses on two 
modeling approaches to develop more refined SDR performance indicators for aircraft component 
types: multiple regression and neural networks. Multiple regression represents a "classical" 
approach to multivariate data analysis while the emerging field of neural networks represents a 
"new" approach to nonlinear data analysis. Multiple regression is a general statistical technique 
used to analyze the relationship between a single dependent (predicted) variable and several 
independent (predictor or regressor) variables. Multiple linear regression produces a linear 
approximation to the data. Variable transformations allow, to some extent, the linear regression 
methods to handle nonlinear cases as well. However, such transformations may make the 
interpretation of the results difficult. One could always find a polynomial of higher degree that 
would give a perfect fit to a specified data set. However, this results in overfitting and an inability 
of the regression model to generalize. Also, regression models do not learn incrementally, and must 
be re-estimated periodically. 

Neural networks attempt to simulate the functioning of human biological neurons. Neural 
networks have been particularly useful in pattern recognition problems that involve capturing and 
learning complex underlying (but consistent) trends in data. Neural networks are highly nonlinear, 
and in some cases, are capable of producing better approximations than multiple regression which 
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Table 1. Sample SDR and ARS "merged" data [10] 
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Estimated 
Aircraft SDR Part Part Part Estimated flight Estimated 
model date name location condition age hr landing 

DC9 84-03-22 Skin E + E compt Cracked 17.74 32,619.03 53,999.20 
DC9  84-03-22 Skin Aft bag bin Cracked 17.74 32,619.03 53,999.20 
DC9 86-07-07 Skin Fuselage Cracked 20.03 36,836.23 60,980.56 
DC9  80-06-20 Skin Galley door Cracked 13.24 34,396.44 33,888.77 
DC9 81-12-01 Skin FS625 Corroded 14.69 38,160.55 37,597.32 
DC9  87-05-11 Skin R T  wheel well Cracked 20.14 52,299.10 51,527.19 
DC9  87-05-11 Skin STA 580-590 Cracked 20.14 52,299.10 51,527.19 

produces a linear approximation [7-9]. However, as noted above, variable transformations do 
allow, to some extent, the regression methods to handle nonlinearity. Neural network learning 
supports incremental updating and is easier to embed in an intelligent decision system since batch 
processing is not required. While neural networks offer an alternative to regression that will learn 
functional relationships among variables to predict an outcome measure, neural network outcomes 
lack a simple interpretation of results. For instance, the modeling technique does not provide 
objective criteria to decide what set of predictors is more important for the prediction. Neural 
networks may also suffer from overfitting of the data and lack of prediction generality. The 
limitations of neural networks with respect to outliers, multicollinearity and other problems 
inherent in real world data have received scant attention. 

Knowledge of the expected numbers of SDRs by aircraft component type will have value to 
Aviation Safety Inspectors (ASIs) when attempting to efficiently schedule field inspection workload 
requirements. Moreover, the identification of unfavorable inspection trends will enable the FAA 
to specify that the airlines take preemptive maintenance measures. 

2.1. Data description 

The CMAS research team was provided with a subset of the SDR database that had been merged 
with the Aircraft Utilization (ARS) database. This merged database was created by Rice [10] and 
consisted of 1308 observations for the DC-9 aircraft for the period April 1974 to March 1990. 
Table 1 displays sample data. Estimated flight hours and estimated landings are derived values 
based upon the original delivery date of the first operator, the date of the ARS data reference and 
the SDR date. The equations developed by Rice [10] for these derived values are presented in Fig. 1. 

3. NEURAL NETWORK MODELS 

Neural networks are computing systems that incorporate a simplified model of the human 
neuron, organized into networks similar to those found in the human brain [7]. Instead of 

• A G E  

• E S T F H R S  = ( S D R D A T E - S E R V I C E ) / ( A R S D A T E - S E R V I C E ) * F H S C U M  

• E S T L D G S  = ( S D R D A T E - S E R V I C E ) / ( A R S D A T E - S E R V I C E ) * L D G S C U M  

where 

E S T F H R S  = Estimated flying hours at S D R D A T E  

E S T L D G S  = Estimated landings at S D R D A T E  

S D R D A T E  = Date of SDR (from SDR database) 

S E R V I C E  = Original delivery date (first operator, ARS)  

A R S D A T E  = Date or ARS data reference 

F H S C U M  = Cumulative fuselage flying hours (ARS)  

L D G S C U M  = Cumulative fuselage landings (ARS)  

S E R V I C E  A R S D A T E  

F H S C U M  

L D G S C U M  

Fig .  1. Derived predictor variables [10]. 

S D R D A T E  

E S T F H R S  
E S T L D G S  
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Fig. 2. An example three-layer backpropagation neural network. 

programming the neural network, it is "taught" to give acceptable results. Artificial neural 
networks are computer simulations of biological neurons. Neural networks can be layered into 
many levels, with or without hidden layers exhibited between an input and an output layer. Figure 
2 displays a network of neurons that are organized into a three-layer hierarchy. The ability of 
artificial neural networks to capture underlying, complex trends in data has been researched and 
documented in a significant number of research papers since the "rebirth" of neural networks in 
1982 when researchers "rediscovered" their important characteristics [11-15]. The large number of 
research papers available on these characteristics prohibits their documentation here, but as an 
indication of their diverse cognitive power, there have been applications of neural networks in 
varied areas from stock market price prediction and credit rating approval to engineering 
applications such as pattern/image recognition, digital signal processing and automated vehicle 
guidance [13]. 

This research attempts to take advantage of the ability of artificial neural networks to capture 
and retain complex underlying relationships that exist between an aircraft's operations data and 
SDR inspection reporting profiles. 

There are six broad categories and approx. 50 different types of neural network architectures 
in use today [16]. Backpropagation neural networks are the most commonly used neural network 
architectures. These neural networks are especially good for pattern recognition. Figure 2 shows 
the basic configuration of the three-layer backpropagation network. To develop a backpropagation 
model, a training set of data patterns which consist of both inputs and the actual outputs observed 
mus t be developed. During training, the neural network processes patterns in a two-step procedure. 
In the first or forward phase of backpropagation learning, an input pattern is applied to the 
network, and the resulting activity is allowed to spread through the network to the output layer. 
The program compares the actual output pattern generated for the given input to the corresponding 
training set output. This comparison results in an error for each neurode in the output layer, In 
the second, or backward phase, the error from the output layer is propagated back through the 
network to adjust the interconnection weights between layers. This learning process is repeated until 
the error between the actual and desired output converges to a predefined threshold [17]. A trained 
neural network is expected to predict the output when a new input pattern is provided to it. 

3. I. SDR part location neural networks 

A structural schematic of the DC-9 aircraft is presented in Fig. 3. For the 1308 sample data 
observations from the period 1974-90, there are only 569 data observations for cracking cases for 
the DC-9, and only 390 observations identify the part location. There is insufficient and incomplete 
input data for each part location, so the part locations were categorized into 11 larger "groupings" 
as presented in Table 2. The corresponding sample sizes for each major part grouping is 
superscripted in parentheses. Note that the part location numbers in Table 2 do not correspond 
to the part location numbers in Fig. 3 due to the "grouping" strategy. The frequency of reporting 
by part location is graphically portrayed in the frequency histogram of Fig. 4. For the given data, 
approx. 70% of cracking cases occurred in the aircraft main fuselage areas and the "Fuselage STA 
588 to 996 (recoded as "Part 3")" includes 22.2% of cracking cases. 
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54 

NO. Description 
1. Radome 

2. Fuselage nose lower structure 
3. Fuselage nose upper structure 
4. JForward service door 
5. ;Fuselage STA 229 to 588 

,upper structure 
6. Fuselage STA 588 to 996 

upper structure 
7. Upper cowl door 
8. Passenger AFT entrance 

stairwell door 
9. Fuselage STA 996 to 1087 

lower structure 
10. Fuselage STA 996 to 1087 

upper structure 
] I. Dorsal fin 
12. Vertical stabilizer 

13. Vertical stabilizer tip 

14. Removable tip fairing 

15. Elevator 

16. Elevator control tab 
17. Elevator jeared tab 
18. Horizontal stabilizer AFT 

section 

NO. Description NO. Description 
20. Horizontal stabilizer leading 39. Aileron 

edBe 
21. Rudder 40. Wing tip 
22. Rudder tab 41. Wing main structure 
23. Tail cone 42. Wing slat 
24. Fuselage tail structure 43. Flap hinge fairing 

25. Passenger AFT entrance door 44. Wing leading edge 
stairway 

26. Pylon AFT panel 45. Main Bear 
27. Thrust reverser cowling 46. Main gear outboard door 

28. Lower cowl door 47. Main gear inboard door 

29. Pylon center panel 48. Keel 

30. Pylon leadin$ edge 49. Wing-to-fuselage fillet 
31. Engine 50. :Fuselage STA 229 to 588 

lower structure 
32. Nose cowl 51. Passenger forward entrance 

door 
33. Fuselage STA 756 to 996 52. Forward stairwell door 

lower structure 
34. Overwing emergency exits 53. Passenger forward entrance 

stairwar 
35. Flap vane 54. Forward nose gear doors 
36. Spoiler 55. AFT nose Bear doors 
37. Wing flap 56. Nose gear 

19. Horizontalstabilizertip 38. Ai]emn tabs 
assembly 

Fig. 3. Structural schematic of the DC-9 aircraft (Douglas Aircraft Co., Inc, DC-9 Structure Repair 
Manual). 

CAIE ~/2--H 
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Table 2. Backpropagation neural networks for DC-9 part locations (cracking cases) 

Initial parameters 

Learning rate = 0.01 Input layers = 3 (Avg-age, Avg-flight hours, Avg-landings) 
Momentum = 0.05 Hidden layers = 21 
lntitial weight = 0.3 Output layer = 11 (No. of SDR for each part location) 
Patterns = 20 

Part description 
Part No. (.):No. of observations R 2 value 

l Fuselage nose structure 15~) 0.8563 
2 Fuselage station 229 to 588 °7) 0.8329 
3 Fuselage station 588 to 996 ~s~) 0.8504 
4 Fuselage station 996 to 1087 ~68) 0.7382 
5 Fuselage tail structure t391 0.6837 
6 Rudder "31 0.7832 
7 Pylon aft panel 17J 0.4926 
8 Wing "sl 0.577 I 
9 Passenger fwd entrance door 127) 0.7948 

10 Cargo door tT) 0.8371 
11 Aft press blkhd c2°) 0.8744 

Based on the current SDR data base which presents one SDR for one aircraft record, a prediction 
model is created that can be used to signal potential problem areas by homogeneous aircraft type. 
The expected number of SDRs in a certain part location is used as an index that indicates the 
possibility of failure in the area. A higher expected number of SDRs suggests a greater possibility 
that a maintenance problem exists. 

To generate the model, current data have been grouped by aircraft age or flight hours to calculate 
the average number of SDRs in each part location. For example, in the age "cohort" or grouping 
of 10 yr ~< aircraft age ~< 10.5 yr, if it is observed that there are two aircraft with three part No. 2 
failures and three aircraft with six part No. 3 failures, then we can argue that one aircraft in that 
age range has 1.5 SDRs (3 SDRs/2 aircraft) for part No. 2 or 2 SDRs (i.e. 6 SDRs/3 aircraft) for 
part No. 3. Moreover, the average age, flight hours and number of landings in this age "cohort" 
is also calculated to create a complete training data record. 

In an attempt to create "robust" SDR prediction models, different data "grouping" strategies 
were surveyed. Currently, the data with aircraft age less than 16 yr are grouped by age in increments 
of 0.5 yr and the remaining data are grouped by flight hours in increments of 4000 hr. This grouping 
strategy is suggested by a multiple regression approach as reported by Luxhoj et al. [6]. The SAS 
regression procedure "STEPWlSE" with significance level 0.05 is used in Ref. 6 to find explanatory 
variables (such as age, flight hours and number of landings) for an overall SDR prediction model 
that included both cracking and corrosion cases. This overall model did not identify part locations. 
If the observed data with aircraft age less than 16 yr are grouped by flight hours, then no 
independent variables are selected for a regression model using the backwards stepwise procedure. 
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Fig.  4. F r e q u e n c y  h i s t o g r a m  o f  p a r t  loca t ions .  
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Table 3. Sample training patterns for neural network models 

Age Flight hours Landings Part-1 Part-2 Part-3 Part-I I 
(input) (input) (input) (output) (output) (output) ... (output) 

7.85 18,690.47 20,802.41 0 0 
9.89 23,196.85 22,131.14 0 0 

I 0.22 26,628.15 29,868.82 0 0 
14.54 38,342.68 39,529.86 0 0 
15.48 20,389.20 21,082.51 0 1 
16.10 7648.51 8747.93 0 0 
16.59 9847.38 I 1,650.02 0 0 
19.71 14,890.32 17,608.92 1 I 
20.49 18,417.62 22,897.46 0 1 
21.27 21,193.82 28,295.16 0 0 
21.22 25,934.51 30,647.01 0 1 
21.18 30,354.34 33,997.60 1 0 
20.93 34,201.58 41,745.07 I 1 
20.47 37,618.85 41,610.96 1 1 
19.95 41,831.14 46,925.22 1.333 I 
20.85 46,138.41 50,187.29 1 1.333 
21.28 49,973.60 56,181.93 1.25 1.5 
21.41 53,329.71 60,088.01 1 I 
21.84 57,753.52 65,016.48 1.222 I 
21.87 61,351.04 56,383.35 I I 

0 0 
1 0 
1 0 
2 0 
0 0 
0 0 
0 0 

0 
... [ 

0 

1.083 
I 
1.583 
1.273 0 
I 0 
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However, if the data are grouped by age, then it appears that age is a significant explanatory 
variable for this model. Furthermore, we can also identify that data with aircraft age greater than 
16 yr should be grouped by flight hours as this can be a significant explanatory variable in the 
prediction model. When using the data grouping strategy of flight hours in the SDR data base, 
the suggested interval grouping size is 4000 flight hours [6]. 

A three-layer backpropagation architecture is used to classify SDR cracking cases for part 
location data grouped by the above data partitioning strategy. Previous research by Luxhoj et  al. 
[6] on the sensitivity of using different neural network architectures for the SDR problem domain 
suggests that the three-layer backpropagation architecture yields the best results for the given SDR 
data. This observation is consistent with Maren et  al. [13] who report on successful applications 
of three-layer backpropagation architectures for fault diagnosis. For the component data, the 
number of SDRs for one aircraft in a certain age group is calculated. As Luxhoj et  al. [6] 
demonstrate, the use of "ungrouped" data results in poor prediction models for both the multiple 
regression and neural network techniques. However, due to the age "grouping" strategy, only 18 
input patterns can be used to train the neural network model. The model includes three input 
neurons (i.e. operations data, such as aircraft age, flight hours and number of landings) and 11 
output neurons that identify the number of SDRs in 11 different part locations. These patterns are 
created in an attempt to capture underlying relationships between aircraft operations data and the 
"mix" of expected number of SDRs by component type. The sample training patterns are presented 
in Table 3, and the designed backpropagation neural network model is shown in Fig. 5. The 
numbers in the 11 "output" columns represent the "average" number of SDRs per airplane for 

Inputs Outputs 

A V E - A G E  

A V G - F H R  
m 

A V G - L D G  

iii 

3-layer 
BACKPROPAGATION 
NEURAL NETWORK 

No. of SDR / aircraft 

Part location No. 1 

Part location No. 2 

Part location No. 3 

Part location No. 11 
~> 

Fig.  5. Backpropagation neural network model for SDR part locations. 
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Fig .  6. M o d e l  p e r f o r m a n c e  o f  the fuse lage  nose  s t ruc tu re  (pa r t  l oca t ion  No .  1). 

that part location and were obtained using the "cohort" data grouping strategy as previously 
discussed. 

The prediction model is trained using the NeuroShell 2 [18] computer program, which requires 
Microsoft Windows, a minimum of 4 MB of RAM, and at least a 386SX microprocessor. In 
addition, this commercial software program implements several different types of neural network 
architectures, and supports easy import/export of files, model building and testing, and the creation 
of run-time versions of trained networks all via a friendly graphical user interface. Backpropagation 
neural network "learning" parameters include the "learning rate" which is used to specify the 
magnitude of the weight changes, the "momentum" factor which specifies the proportion of the 
last weight change that is added to the new weight change, and an "initial weight" that is used 
to initialize the weights between the network's connections prior to "training". 

In neural network modeling, the R: value compares the accuracy of the model to the accuracy 
of a trivial benchmark model where the prediction is simply the mean of all the sample patterns. 
A perfect fit would result in an R 2 value of 1, a very good fit near 1, and a poor fit near 0. If the 
neural network model predictions are worse than one could predict by just using the mean of the 
sample case outputs, the R 2 will be 0. Although not precisely interpreted in the same manner as 
the R 2 value or coefficient of multiple determination in regression modeling, nevertheless, the R 2 

value from a neural network model may be used as an approximation when evaluating model 
adequacy. 

Plots of the actual value vs the predicted value from the network for two of the part loca- 
tions are exhibited in Figs 6 and 7. These parts are the Fuselage Nose Structure (Part No. 1) 
and the Fuselage Station 588-996 (Part No. 3). Corresponding R 2 values for each of the 11 part 
location models are provided in Table 2. Eight of the 11 models have R 2 values about 0.7 
which suggests that a backpropagation neural network is very effective in predicting the 
number of SDRs for major structural groupings of part locations. Five of the 11 models have 
R 2 values of 0.8 or higher. The "best" part location backpropagation models in this study are 
for the AFT Press BULKHEAD (R2= 0.8744), fuselage nose structure (R2= 0.8563), fuselage 
stations 588 to 996 (R2= 0.8504), cargo door (R2= 0.8371) and fuselage stations 229 to 588 
(R 2 = 0.8329). 

The accuracy of neural network models will be affected by the input training patterns. The 
number of the observations for each of the 11 part locations is one major factor that has influence 
on the accuracy and efficiency of the model. For a small number of observations, the neural 
network model cannot provide an effective prediction for some part locations. For example, the 
Pylon AFT panel model (R 2 = 0.4926) is based on only seven observations. Even for some cases 
that have a relatively high R 2 value but with only few observations, there is still insufficient evidence 
to conclude that the model provides a reasonable prediction in this part location. The cargo door 
neural network model is one of these cases. 
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3.2. Comparison with multiple regression models 

An alternative approach to estimate the number of SDRs by part location is the use of multiple 
regression. However, one multiple regression model can only predict one dependent variable. To 
predict the number of SDRs for 11 different part locations, 11 different multiple regression models 
should be created. The following list of possible explanatory variables was used in creating the 
multiple regression models: age, flight hours, number of landings, age z, flight hours 2, number of 
landings z, age × flight hours, age x number of landings, flight hours x number of landings, flight 
hours/age, and number of landings/age. Quadratic terms were considered in an inherently linear 
model to evaluate any nonlinear relationships. The regression models were examined for 
multicollinearity, since a high degree of multicollinearity makes the results not generalizable as the 
parameter estimates in the model may not be stable due to the high variance of the estimated 
coefficients. Since flight hours, number of landings and age of an aircraft are interrelated, 
multicollinearity is inherent in the independent variables. 

Two statistical measures of multicollinearity are the tolerance (TOL) value and the variance 
inflation factor (VIF) (Hair et al. [19]). The tolerance value is equal to one minus the proportion 
of a variable's variance that is explained by the other predictors. A low tolerance value indicates 
a high degree of collinearity. The variance inflation factor is the reciprocal of the tolerance value, 
so a high variance inflation factor suggests a high degree of collinearity present in the model. The 
VIF and TOL measures assume normality and are typically relative measures. A high tolerance 
value (above 0.10) and a low VIF value (below 10) usually suggest a relatively small degree of 
multicollinearity (Hair et al. [19]). 

Due to the lack of observed data in two cases (i.e. sample sizes of seven), only nine multiple 
regression models are created to estimate the number of SDRs for major structural groupings of 
part locations. The VIF and TOL values were examined for each model to reduce the multi- 
collinearity. A sample model to predict the expected number of SDRs for the major structural 
grouping of "Fuselage Station 588-996 (Part No. 3)" is provided below: 

No. of SDRs (Part No. 3) = -6.192868 + (0.341556 × a g e ) -  (0.000004097 x age x flight 
hours) + (0.001897 x age/flight hours). 

This model has an R 2 value of 0.7844 and the relative measures of multicollinearity are reported 
a s :  

Independent variable TOL VIF 
age 0.05040 19.839 
age x flight hours 0.03395 29.455 
age/flight hours 0.06052 16.522 
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Fig.  7. M o d e l  p e r f o r m a n c e  o f  the fuselage s ta t ions  588--996 (pa r t  l oca t ion  No .  3). 
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Table 4. Comparison of neural network and multiple regression models 

NN MR 
Part description 

Part No. (.):No. of observations R 2 MSE R 2 MSE 

1 Fuselage nose structure 15o 0.8563 0.043 0.6723 0.123 
2 Fuselage station 229 to 588 °7) 0.8329 0.048 0.5314 0.170 
3 Fuselage station 588 to 996 ts° 0.8504 0.039 0.7844 0.070 
4 Fuselage station 996 to 1087 t68~ 0.7382 0.078 0.5435 0.171 
5 Fuselage tail structure °9) 0.6837 0.099 0.6303 0.145 
6 Rudder 113) 0.7832 0.054 0.4699 0.164 
7 Pylon aft panel c7) 0.4926 0.107 - -  - -  
8 Wing °5) 0.5771 0.101 0.4453 0.166 
9 Passenger fwd entrance door ~27) 0.7948 0.051 0.6801 0.099 

10 Cargo door  t7) 0.8371 0.034 - -  - -  
I l Aft press blkhd a°~ 0.8744 0.047 0.6593 0.158 

The multicollinearity measures suggest that some degree of multicollinearity is present in this 
model, but these values are close to the generally recommended threshold values of VIF ~< 10 and 
TOL i> 0.10. 

Table 4 presents the R 2 values for the nine regression models as compared with the R 2 values 
for the corresponding neural network models. Although not interpreted precisely in the same 
manner, nevertheless, analyzing the R 2 values from neural network and multiple regression 
facilitates approximate comparisons. Only one multiple regression model has an R 2 value above 
0.7. 

Since the goal is to maximize the precision of the SDR predictions, the mean square error (MSE) 
is also used for comparative purposes. The MSE is defined as: 

A A 
MSE (fl) = E(fl - 13) 2, 

where fl is some arbitrary parameter. The above expression is equivalent to: 

A A 
MSE = [bias (fl)]2 +var  (/3). 

The criterion of minimizing the MSE thus considers the variance and the square of the bias of 
the estimator. Comparing the results of the two approaches reveals that neural network modeling 
provides better fits to the SDR part location data in all cases than does regression modeling. Also, 
it appears that neural networks may be more useful for predictive purposes, in some cases, when 
there are sparse data sets, an observation that has been reported in Luxhoj and Shyur [20] in their 
analysis of helicopter part reliability data. However, the general predictive capability and statistical 
confidence of neural networks given small sample sizes still requires investigation across varied 
characterizations of data sets. 

4. C O N C L U S I O N S  A N D  R E C O M M E N D A T I O N S  

In this study, promising results are achieved when using three-layer backpropagation neural 
networks to predict SDR reporting profiles by part location for major structural components for 
the DC-9 aircraft. Prediction of the number of SDRs for each part location is helpful to Aviation 
Safety Inspectors (ASIs) and may be used to signal potential problem areas based upon aircraft 
operating conditions and age. Using neural networks, one can obtain the expected number of SDRs 
for a major structural grouping of components whenever the operating conditions are known. 
These current results are encouraging, but additional data are required to validate the generality 
of the modeling approach. 

The part location data "grouping" strategy is useful to provide efficient input patterns to create 
a reasonable neural network model. However, some information hidden in the data set is lost in 
the process of "grouping". Due to this strategy, the difficulty to maintain the current neural 
network will also increase. A new approach to replace the current "grouping" strategy should be 
developed. 
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Another recommendation is to develop the entire probability mass function from the neural 
network for major part locations. This would then provide aircraft safety inspectors with the most 
likely category of failure, the second most likely etc. based upon the operating conditions and age 
of the aircraft. Attempts to refine the management reporting from the neural network models are 
underway. 

Neural network modeling, a model-free regression technique, is easy to develop, maintain and 
use. However, it should possess one set of reasonable and useful input buffers. In the SDR reporting 
profiles, only three different input buffers (age, flight hours and number of landings) can be used 
in this model. Other factors that affect the components, such as engine hours and flight cycles, are 
still not exhibited in the SDR reporting profiles. If these data can be collected and merged to the 
current data base, then more promising and meaningful models can be created. 
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